Abstract:
A mixed equilibrium/kinetic steady-state numerical model of coral calcification has been developed to test whether a physicochemical calcification mechanism is able to account for recent geochemical observations, in particular correlated trace-element variations presented in a companion paper [Sinclair, D.J., 2005. Correlated trace-element ’vital effects’ in tropical corals: a new tool for probing biomineralization chemistry. Geochim. Cosmochim. Acta 69 (13), 3265-3284]. The model simulates trace-element partitioning from a CaCO3 supersaturated extracellular calcifying fluid (ECF) which has been modified by enzymatic input of Ca2+ and removal of 2H+ by CaATPase. CO2 input is modelled as a diffusion process, while the ECF is continuously replenished by fresh seawater, which is the sole source of minor and trace-elements (TEs). Trace-element species fully equilibrate in the ECF, and selected trace-element species kinetically compete with Ca2+ or CO32 - at the surface of the growing crystal. Each simulation is run to steady-state, and results are presented for a grid of CaATPase ion pumping rates and seawater replenishment rates. The dominant feature of the model output occurs when CaATPase ion pumping is high while seawater replenishment rates are low. At this point, CO2 diffusion reaches its maximum, C input becomes limiting, buffering capacity is reduced and the pH of the system rises dramatically; significantly affecting the TE composition of the skeleton. At more modest pumping rates, the model reproduces the relative amplitudes of trace-element variations and slopes of the mutually positive correlations between B, Sr and U observed by Sinclair [Sinclair, D.J., 2005. Correlated trace-element ’vital effects’ in tropical corals: a new tool for probing biomineralization chemistry. Geochim. Cosmochim. Acta 69 (13), 3265-3284], but does not reproduce the negative correlations with Mg. The best fit between model and observation occurs when the coral simultaneously increases ion pumping and seawater replenishment rates: a strategy which allows rapid calcification while avoiding dangerously high pH variations. The model predicts that calcification occurs at only moderate pH elevations (8.3-8.4) with seasonal TE variations being explained by a shift of only 0.3 pH units. The model does not reproduce the full amplitude of diurnal pH variations observed recently. Sensitivity tests show that the model output is relatively insensitive to changes in the composition of the fluid from which the ECF is drawn (such as might occur if photosynthesis or active C transport mechanisms significantly modify the penultimate fluid source). Further research, however, is needed to establish the consequences of active transport of TEs and anions to the calcifying site. ? 2006.