Abstract:
Located at the volcanic front in the western Mexican arc, in the Colima Rift, is the active Volcán Colima, which lies on the southern end of the massive (~450 km3) Colima-Nevado volcanic complex. Along the margins of this andesitic volcanic complex, is a group of 11 scoria cones and associated lavas, which have been dated by the 40Ar/39Ar method. Nine scoria cones erupted ~1.3 km3 of alkaline magma (basanite, leucite-basanite, minette) between 450 and 60 ka, with >99% between 240 and 60 ka. Two additional cones (both the oldest and calc-alkaline) erupted <0.003 km3 of basalt (0.5 Ma) and <0.003 km3 of basaltic andesite (1.2 Ma), respectively. Cone and lava volumes were estimated with the aid of digital elevation models (DEMs). The eruption rate for these scoria cones and their associated lavas over the last 1.2 Myr is ~1.2 km3/Myr, which is more than 400 times smaller than that from the andesitic Colima-Nevado edifice. In addition to these alkaline Colima cones, two other potassic basalts erupted at the volcanic front, but ~200 km to the ESE (near the historically active Volcán Jorullo), and were dated at 1.06 and 0.10 Ma. These potassic suites reflect the tendency in the west-central Mexican arc for magmas close to the volcanic front to be enriched in K2O relative to those farther from the trench. Ferric-ferrous analyses on pristine samples from the alkaline cones adjacent to V. Colima and V. Jorullo indicate that their oxygen fugacities relative to the nickel-nickel oxide buffer are significantly higher (ΔNN0=2–4) than those for the calc-alkaline magma types (0–1.5). These ΔNNO values correlate positively with Ba concentrations and likely reflect the influence of a slab-derived fluid. As a result of the high oxidation states, the solubility of sulfur in these potassic magmas is enhanced. Indeed the sulfur content of both the whole rock and the apatite phenocrysts (and in olivine melt inclusions reported in the literature) suggest that part of their pre-eruptive sulfur gas (SO2) concentrations could have been discharged to the atmosphere in amounts comparable to the 1982 eruption of El Chichón, although over a prolonged period spanning thousands of years (not per eruption).