SOLUTE SOURCES IN STREAM WATER DURING CONSECUTIVE FALL STORMS IN A NORTHERN HARDWOOD FOREST WATERSHED: A COMBINED HYDROLOGICAL, CHEMICAL AND ISOTOPIC APPROACH

Show simple item record

dc.contributor.author Mitchell M.J.
dc.contributor.author Piatek K.B.
dc.contributor.author Christopher S.
dc.contributor.author Mayer B.
dc.contributor.author Kendall C.
dc.contributor.author Mchale P.
dc.date.accessioned 2024-09-10T10:56:15Z
dc.date.available 2024-09-10T10:56:15Z
dc.date.issued 2006
dc.identifier https://www.elibrary.ru/item.asp?id=53288293
dc.identifier.citation Biogeochemistry, 2006, 78, 2, 217-246
dc.identifier.issn 0168-2563
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/45078
dc.description.abstract Understanding the effects of climate change including precipitation patterns has important implications for evaluating the biogeochemical responses of watersheds. We focused on four storms in late summer and early fall that occurred after an exceptionally dry period in 2002. We analyzed not only the influence of these storms on episodic chemistry and the role of different water sources in affecting surface water chemistry, but also the relative contributions of these storms to annual biogeochemical mass balances. The study site was a well studied 135-ha watershed in the Adirondack Park of New York State (USA). Our analyses integrated measurements on hydrology, solute chemistry and the isotopic composition of NO 3 − (δ15N and δ18O) and SO 4 2− (δ34S and δ18O) to evaluate how these storms affected surface water chemistry. Precipitation amounts varied among the storms (Storm 1: Sept. 14–18, 18.5 mm; Storm 2: Sept. 21–24, 33 mm; Storm 3: Sept. 27–29, 42.9 mm; Storm 4: Oct. 16–21, 67.6 mm). Among the four storms, there was an increase in water yields from 2 to 14%. These water yields were much less than in studies of storms in previous years at this same watershed when antecedent moisture conditions were higher. In the current study, early storms resulted in relatively small changes in water chemistry. With progressive storms the changes in water chemistry became more marked with particularly major changes in Cb (sum of base cations), Si, NO 3 − , and SO 4 2− , DOC and pH. Analyses of the relationships between Si, DOC, discharge and water table height clearly indicated that there was a decrease in ground water contributions (i.e., lower Si concentrations and higher DOC concentrations) as the watershed wetness increased with storm succession. The marked changes in chemistry were also reflected in changes in the isotopic composition of SO 4 2− and NO 3 − . There was a strong inverse relationship between SO 4 2− concentrations and δ34S values suggesting the importance of S biogeochemical redox processes in contributing to SO 4 2− export. The isotopic composition of NO 3 − in stream water indicated that this N had been microbially processed. Linkages between SO 4 2− and DOC concentrations suggest that wetlands were major sources of these solutes to drainage waters while the chemical and isotopic response of NO 3 − suggested that upland sources were more important. Although these late summer and fall storms did not play a major role in the overall annual mass balances of solutes for this watershed, these events had distinctive chemistry including depressed pH and therefore have important consequences to watershed processes such as episodic acidification, and the linkage of these processes to climate change.
dc.subject HYDROLOGY
dc.subject ISOTOPES
dc.subject NITRATE
dc.subject STORMS
dc.subject SULFATE
dc.subject WATERSHED
dc.title SOLUTE SOURCES IN STREAM WATER DURING CONSECUTIVE FALL STORMS IN A NORTHERN HARDWOOD FOREST WATERSHED: A COMBINED HYDROLOGICAL, CHEMICAL AND ISOTOPIC APPROACH
dc.type Статья
dc.identifier.doi 10.1007/s10533-005-4277-1


Files in this item

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record