CLAY MINERALOGY OF THE OLD RED SANDSTONE AND DEVONIAN SEDIMENTARY ROCKS OF WALES, SCOTLAND AND ENGLAND

Show simple item record

dc.contributor.author Hillier S.
dc.contributor.author Wilson M.J.
dc.contributor.author Merriman R.J.
dc.date.accessioned 2024-10-08T00:40:25Z
dc.date.available 2024-10-08T00:40:25Z
dc.date.issued 2006
dc.identifier https://www.elibrary.ru/item.asp?id=14538257
dc.identifier.citation Clay Minerals, 2006, 41, 1, 433-471
dc.identifier.issn 0009-8558
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/45737
dc.description.abstract The Devonian sedimentary rocks of the UK are made up of a continental red bed facies, the Old Red Sandstone (ORS), and sediments of a marine origin. The latter are confined to southwest England whereas the ORS occurs much more extensively, particularly in South Wales, the West Midlands, Northern England, the Midland Valley of Scotland and the Orcadian basin. The ORS also occurs extensively offshore where it contains important hydrocarbon reservoirs. Highly variable suites of clay mineral assemblages are characteristic of the ORS. In the West Midlands and Monmouthshire, the Downton Group is characterized by illitic, smectitic, and mixed-layer illite-smectite minerals. A tuff bed (Townsend Tuff) also contains expansible minerals but when the bed is traced westwards it is found that the clay mineralogy changes progressively to an illite-chlorite assemblage, suggesting the influence of diagenetic or metamorphic change. It is not known, however, whether such a transformation is typical of the Downton Group as a whole. The overlying Ditton Group in its eastern outcrops contains a high-spacing mineral identified as tosudite, together with regularly interstratified illite-smectite and well crystallized kaolinite. Further west this assemblage gives way to illite and chlorite, with the latter being trioctahedral or dioctahedral, while in Dyfed the Ditton Group may contain smectite and poorly crystallized kaolinite in addition to illite and chlorite. The geographical distribution of clay minerals in the Ditton Group may also be accounted for by progressive diagenetic to low-grade metamorphic reactions, although it is necessary to postulate retrogressive diagenesis to account for the smectite and kaolinite that occur in the Dyfed samples. The clay mineralogy of the overlying Brecon Group and the Upper ORS also consists of mixtures of illite and chlorite in the west and central parts of the region. No data are available for the Brecon Group in the eastern parts of the outcrop but the Upper ORS from around Monmouth and Portishead contains assemblages rich in kaolinite and mixed-layer illite-smectite with only minor amounts of chlorite. The distribution of clay minerals in the Upper ORS is again suggestive of a progressive westerly increase in the influence of diagenetic alteration, although the influence of provenance cannot be discounted. In Scotland the clay mineralogy of the Lower ORS in the Midland valley is characterized by a variety of interstratified minerals, including regularly interstratified trioctahedral chlorite-vermiculite, a tosudite mineral similar to that described from South Wales and illite-smectite, as well as occasional illite, chlorite and smectite. The oldest Stonehaven Group is kaolinitic but in the younger groups kaolinite is either completely absent or present in only minor amounts. It is clear that detrital inputs, particularly from associated volcanic rocks, have contributed to the clay minerals found in these rocks, although the contribution could be indirect with diagenetic clay minerals forming from volcanic detritus after deposition. Diagenetic alteration may also be important, particularly with respect to the origin of the tosudite mineral. The Middle ORS lacustrine sediments of the Orcadian Basin of Scotland are characterized by mixtures of trioctahedral chlorite and dioctahedral illite, with interstratified chlorite-smectite, illite-smectite, kaolinite and occasional reports of minor montmorillonite. The most recent interpretations of the origins of the clay minerals in these rocks emphasize the role of progressive diagenetic and low-grade metamorphic reactions, based on correlations of clay mineral assemblages and parameters such as illite crystallinity with organic maturation data. This interpretation argues that the illite-smectite in the shales is derived largely from a precursor detrital smectite. However, the finding of two populations of morphologically and structurally distinct illite-smectite particles in the Middle and Upper ORS sandstones suggests a more complex picture involving different diagenetic episodes. In addition, the likelihood of a smectitic-rich detrital input to the ORS may also be a point of debate. The clay mineralogy of the North Sea offshore is also described briefly, in addition to the marine Devonian in southwest England. The latter is characterized by chlorite and illite assemblages of low-grade metamorphic origin, although smectite and kaolinite are also found occasionally in these rocks. The offshore ORS, however, contains a variety of clay minerals, including an assemblage similar to that found in the Lower ORS south of the Highland Boundary Fault and notably contains a tosudite-like mineral. © 2006 The Mineralogical Society.
dc.subject CHLORITE
dc.subject CHLORITE-SMECTITE
dc.subject CLAY MINERALOGY
dc.subject DEVONIAN
dc.subject DIOCTAHEDRAL CHLORITE
dc.subject ILLITE
dc.subject ILLITE-SMECTITE
dc.subject KAOLINITE
dc.subject OLD RED SANDSTONE
dc.subject ORS
dc.subject SUDOITE
dc.subject TOSUDITE
dc.subject UK
dc.title CLAY MINERALOGY OF THE OLD RED SANDSTONE AND DEVONIAN SEDIMENTARY ROCKS OF WALES, SCOTLAND AND ENGLAND
dc.type Статья
dc.identifier.doi 10.1180/0009855064110203
dc.subject.age Палеозой::Девонская
dc.subject.age Paleozoic::Devonian


Files in this item

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record