PLATINUM-GROUP ELEMENT, GOLD, SILVER AND BASE METAL DISTRIBUTION IN COMPOSITIONALLY ZONED SULFIDE DROPLETS FROM THE MEDVEZKY CREEK MINE, NORIL'SK, RUSSIA

Show simple item record

dc.contributor.author Barnes S.J.
dc.contributor.author Cox R.A.
dc.contributor.author Zientek M.L.
dc.date.accessioned 2024-10-15T03:44:29Z
dc.date.available 2024-10-15T03:44:29Z
dc.date.issued 2006
dc.identifier https://www.elibrary.ru/item.asp?id=14732087
dc.identifier.citation Contributions to Mineralogy and Petrology, 2006, 152, 2, 187-200
dc.identifier.issn 0010-7999
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/45915
dc.description.abstract Concentrations of Ag, Au, Cd, Co, Re, Zn and Platinum-group elements (PGE) have been determined in sulfide minerals from zoned sulfide droplets of the Noril'sk 1 Medvezky Creek Mine. The aims of the study were; to establish whether these elements are located in the major sulfide minerals (pentlandite, pyrrhotite, chalcopyrite and cubanite), to establish whether the elements show a preference for a particular sulfide mineral and to investigate the model, which suggests that the zonation in the droplets is caused by the crystal fractionation of monosulfide solid solution (mss). Nickel, Cu, Ag, Re, Os, Ir, Ru, Rh and Pd, were found to be largely located in the major sulfide minerals. In contrast, less than 25% of the Au, Cd, Pt and Zn in the rock was found to be present in these sulfides. Osmium, Ir, Ru, Rh and Re were found to be concentrated in pyrrhotite and pentlandite. Palladium and Co was found to be concentrated in pentlandite. Silver, Cd and Zn concentrations are highest in chalcopyrite and cubanite. Gold and platinum showed no preference for any of the major sulfide minerals. The enrichment of Os, Ir, Ru, Rh and Re in pyrrhotite and pentlandite (exsolution products of mss) and the low levels of these elements in the cubanite and chalcopyrite (exsolution products of intermediate solid solution, iss) support the mss crystal fractionation model, because Os, Ir, Ru, Rh and Re are compatible with mss. The enrichment of Ag, Cd and Zn in chalcopyrite and cubanite also supports the mss fractionation model these minerals are derived from the fractionated liquid and these elements are incompatible with mss and thus should be enriched in the fractionated liquid. Gold and Pt do not partition into either iss or mss and become sufficiently enriched in the final fractionated liquid to crystallize among the iss and mss grains as tellurides, bismithides and alloys. During pentlandite exsolution Pd appears to have diffused from the Cu-rich portion of the droplet into pentlandite. © Springer-Verlag 2006.
dc.title PLATINUM-GROUP ELEMENT, GOLD, SILVER AND BASE METAL DISTRIBUTION IN COMPOSITIONALLY ZONED SULFIDE DROPLETS FROM THE MEDVEZKY CREEK MINE, NORIL'SK, RUSSIA
dc.type Статья
dc.identifier.doi 10.1007/s00410-006-0100-9


Files in this item

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record