THE MAGNESIUM ISOTOPE BUDGET OF THE MODERN OCEAN: CONSTRAINTS FROM RIVERINE MAGNESIUM ISOTOPE RATIOS

Show simple item record

dc.contributor.author Tipper E.T.
dc.contributor.author Galy A.
dc.contributor.author Bickle M.J.
dc.contributor.author Elderfield H.
dc.contributor.author Carder E.A.
dc.contributor.author Gaillardet J.
dc.date.accessioned 2024-11-17T03:30:02Z
dc.date.available 2024-11-17T03:30:02Z
dc.date.issued 2006
dc.identifier https://www.elibrary.ru/item.asp?id=13899689
dc.identifier.citation Earth and Planetary Science Letters, 2006, 250, 1-2, 241-253
dc.identifier.issn 0012-821X
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/46500
dc.description.abstract We have measured the magnesium (Mg) isotope ratios in 45 rivers including 16 of the largest rivers in the world, covering a range of geologic, tectonic and climatic drainage basin environments. The range in riverine δ26Mg is 2.5‰, half the variation in terrestrial rock. Although the Mg isotopic composition of the source rock is important for small rivers, at a global scale lithology is of limited significance for Mg isotope ratios in rivers. Part of the variability at a global scale may be attributed to fractionation in the weathering environment. The rivers analysed constitute 30% of the global Mg riverine flux to the oceans and a flux weighted Mg isotope composition of global runoff has been estimated at - 1.09‰. Even taking into account uncertainty, this is distinct from seawater at - 0.82‰. This difference arises either from the fractionation of Mg isotope ratios in the ocean and/or a Mg budget which is not at steady state. The difference is consistent with fractionation by carbonate precipitation. In the simplest steady state scenario, where the oceanic mass balance is maintained by riverine input and hydrothermal and dolomite output, Mg isotope ratios imply a minimum dolomite Mg flux of 9% of the total output Mg flux. The implications of the distinct isotopic composition of the riverine flux from modern seawater, is that the Mg isotope ratio of seawater has probably varied outside of current analytical uncertainty. Mg isotope ratios may therefore provide a valuable new tracer in palaeo-oceanography. © 2006 Elsevier B.V. All rights reserved.
dc.subject CYCLE
dc.subject FLUX
dc.subject ISOTOPES
dc.subject MAGNESIUM
dc.subject MG
dc.subject OCEANS
dc.subject PALAEO-OCEANOGRAPHY
dc.subject RIVERS
dc.subject WEATHERING
dc.title THE MAGNESIUM ISOTOPE BUDGET OF THE MODERN OCEAN: CONSTRAINTS FROM RIVERINE MAGNESIUM ISOTOPE RATIOS
dc.type Статья
dc.identifier.doi 10.1016/j.epsl.2006.07.037


Files in this item

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record