ANALYSIS OF AFTERSHOCKS IN A LITHOSPHERIC MODEL WITH SEISMOGENIC ZONE GOVERNED BY DAMAGE RHEOLOGY

Show simple item record

dc.contributor.author Ben-Zion Y.
dc.contributor.author Lyakhovsky V.
dc.date.accessioned 2025-01-25T04:34:02Z
dc.date.available 2025-01-25T04:34:02Z
dc.date.issued 2006
dc.identifier https://www.elibrary.ru/item.asp?id=14460086
dc.identifier.citation Geophysical Journal International, 2006, 165, 1, 197-210
dc.identifier.issn 0956-540X
dc.identifier.uri https://repository.geologyscience.ru/handle/123456789/47538
dc.description.abstract We perform analytical and numerical studies of aftershock sequences following abrupt steps of strain in a rheologically layered model of the lithosphere. The model consists of a weak sedimentary layer, over a seismogenic zone governed by a viscoelastic damage rheology, underlain by a viscoelastic upper mantle. The damage rheology accounts for fundamental irreversible aspects of brittle rock deformation and is constrained by laboratory data of fracture and friction experiments. A 1-D version of the viscoelastic damage rheology leads to an exponential analytical solution for aftershock rates. The corresponding solution for a 3-D volume is expected to be sum of exponentials. The exponential solution depends primarily on a material parameter. R given by the ratio of timescale for damage increase to timescale for accumulation of gradualinelastic deformation, and to a lesser extent on the initial damage and a threshold strain state for material degradation. The parameter R is also inversely proportional to the degree of seismic coupling across the fault. Simplifying the governing equations leads to a solution following the modified Omori power-law decay with an analytical exponent p = 1. In addition, the results associated with the general exponential expression can be fitted for various values of R with the modified Omori law. The same holds for the decay rates of aftershocks simulated numerically using the 3-D layered lithospheric model. The results indicate that low R values (e.g. < = 1) corresponding to cold brittle material produce long Omori-type aftershock sequences with high event productivity, while high R values (e.g. > = 5) corresponding to hot viscous material produce short diffuse response with low event productivity. The frequency-size statistics of aftershocks simulated in 3-D cases with low R values follow the Gutenberg-Richter power law relation, while events simulated for high R values are concentrated in a narrow magnitude range. Increasing thickness of the weak sedimentary cover produces results that are similar to those associated with higher R values. Increasing the assumed geothermal gradient reduces the depth extent of the simulated earthquakes. The magnitude of the largest simulated aftershocks is compatible with the Båth law for a range of values of a dynamic damage-weakening parameter. The results provide a physical basis for interpreting the main observed features of aftershock sequences in terms of basic structural and material properties. © 2006 The Authors Journal compilation © 2006 RAS.
dc.subject AFTERSHOCKS
dc.subject CRACKED MEDIA
dc.subject DAMAGE RHEOLOGY
dc.subject EARTHQUAKE DYNAMICS
dc.subject FAULT MECHANICS
dc.subject LITHOSPHERIC MODEL
dc.title ANALYSIS OF AFTERSHOCKS IN A LITHOSPHERIC MODEL WITH SEISMOGENIC ZONE GOVERNED BY DAMAGE RHEOLOGY
dc.type Статья
dc.identifier.doi 10.1111/j.1365-246X.2006.02878.x


Files in this item

This item appears in the following Collection(s)

  • ELibrary
    Метаданные публикаций с сайта https://www.elibrary.ru

Show simple item record