QUANTIFYING UNCERTAINTY IN MINERAL RESOURCES BY USE OF CLASSIFICATION SCHEMES AND CONDITIONAL SIMULATIONS
- DSpace Home
- →
- Геология России
- →
- ELibrary
- →
- View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
dc.contributor.author | Emery X. | |
dc.contributor.author | Ortiz Ju.M. | |
dc.contributor.author | Rodríguez Ju.J. | |
dc.date.accessioned | 2025-03-01T03:25:56Z | |
dc.date.available | 2025-03-01T03:25:56Z | |
dc.date.issued | 2006 | |
dc.identifier | https://www.elibrary.ru/item.asp?id=52749580 | |
dc.identifier.citation | Mathematical Geology, 2006, 38, 4, 445-464 | |
dc.identifier.issn | 0882-8121 | |
dc.identifier.uri | https://repository.geologyscience.ru/handle/123456789/48245 | |
dc.description.abstract | Mineral inventory determination consists of estimating the amount of mineral resources on a block-by-block basis and classifying individual blocks into categories with increasing level of geologic confidence. Such classification is a crucial issue for mining companies, investors, financial institutions, and authorities, but it remains subject to some confusion because of the wide variations in methodologies and the lack of standardized procedures. The first part of this paper considers some of the criteria used to classify resources in practice and their impact through a sensitivity study using data from a Chilean porphyry copper deposit. Five classification criteria are compared and evaluated, namely: Search neighborhoods, absolute and relative kriging variances, absolute and relative conditional simulation variances. It is shown that some classification criteria either favor or penalize the high-grade areas if the grade distribution presents a proportional effect. In the second part of the paper, conditional simulations are used to quantify the uncertainty on the overall mineral resources. This approach is promising for risk analysis and decision-making. Unlike linear kriging, simulations allow inclusion of a cutoff grade in the calculation of the resources and also provide measures of their joint uncertainty over production volumes. | |
dc.subject | RESOURCE CLASSIFICATION | |
dc.subject | MINERAL INVENTORY | |
dc.subject | GEOSTATISTICS | |
dc.subject | KRIGING | |
dc.subject | CONDITIONAL SIMULATIONS | |
dc.subject | PROPORTIONAL EFFECT | |
dc.title | QUANTIFYING UNCERTAINTY IN MINERAL RESOURCES BY USE OF CLASSIFICATION SCHEMES AND CONDITIONAL SIMULATIONS | |
dc.type | Статья | |
dc.identifier.doi | 10.1007/s11004-005-9021-9 |
Files in this item
This item appears in the following Collection(s)
-
ELibrary
Метаданные публикаций с сайта https://www.elibrary.ru