GEOSTATISTICS FOR POWER MODELS OF GAUSSIAN FIELDS

dc.contributor.authorVargas-Guzman J.A.
dc.date.accessioned2022-09-22T08:19:14Z
dc.date.available2022-09-22T08:19:14Z
dc.date.issued2004
dc.description.abstractThis paper introduces geostatistical approaches (i.e., kriging estimation and simulation) for a group of non-Gaussian random fields that are power algebraic transformations of Gaussian and lognormal random fields. These are power random fields (PRFs) that allow the construction of stochastic polynomial series. They were derived from the exponential random field, which is expressed as Taylor series expansion with PRF terms. The equations developed from computation of moments for conditional random variables allow the correction of Gaussian kriging estimates for the non-Gaussian space. The introduced PRF geostatistics shall provide tools for integration of data that requires simple algebraic transformations, such as regression polynomials that are commonly encountered in the practical applications of estimation. The approach also allows for simulations drawn from skewed distributions.
dc.identifierhttps://elibrary.ru/item.asp?id=6526502
dc.identifier.citationMathematical Geology, 2004, 36, 3, 307-322
dc.identifier.issn0882-8121
dc.identifier.urihttps://repository.geologyscience.ru/handle/123456789/38697
dc.subjectSKEWED DISTRIBUTION
dc.subjectNON-GAUSSIAN KRIGING
dc.subjectPOWER TRANSFORM
dc.subjectCONDITIONAL SIMULATION
dc.titleGEOSTATISTICS FOR POWER MODELS OF GAUSSIAN FIELDS
dc.typeСтатья

Файлы

Оригинальный пакет

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
Varg_04.pdf
Размер:
975.33 KB
Формат:
Adobe Portable Document Format

Коллекции