RESERVOIR DESCRIPTION USING DYNAMIC PARAMETERISATION SELECTION WITH A COMBINED STOCHASTIC AND GRADIENT SEARCH

dc.contributor.authorNielsen L.K.
dc.contributor.authorSubbey S.
dc.contributor.authorChristie M.
dc.contributor.authorMannseth T.
dc.date.accessioned2024-10-18T08:57:33Z
dc.date.available2024-10-18T08:57:33Z
dc.date.issued2006
dc.description.abstractThere is a correspondence between flow in a reservoir and large scale permeability trends. This correspondence can be derived by constraining reservoir models using observed production data. One of the challenges in deriving the permeability distribution of a field using production data involves determination of the scale of resolution of the permeability. The Adaptive Multiscale Estimation (AME) seeks to overcome the problems related to choosing the resolution of the permeability field by a dynamic parameterisation selection. The standard AME uses a gradient algorithm in solving several optimisation problems with increasing permeability resolution. This paper presents a hybrid algorithm which combines a gradient search and a stochastic algorithm to improve the robustness of the dynamic parameterisation selection. At low dimension, we use the stochastic algorithm to generate several optimised models. We use information from all these produced models to find new optimal refinements, and start out new optimisations with several unequally suggested parameterisations. At higher dimensions we change to a gradient-type optimiser, where the initial solution is chosen from the ensemble of models suggested by the stochastic algorithm. The selection is based on a predefined criterion. We demonstrate the robustness of the hybrid algorithm on sample synthetic cases, which most of them were considered insolvable using the standard AME algorithm.
dc.identifierhttps://www.elibrary.ru/item.asp?id=50947068
dc.identifier.citationComputational Geosciences, 2006, 10, 3, 321-342
dc.identifier.doi10.1007/s10596-006-9026-6
dc.identifier.issn1420-0597
dc.identifier.urihttps://repository.geologyscience.ru/handle/123456789/45955
dc.subjectADAPTIVE MULTISCALE ESTIMATION
dc.subjectGRADIENT OPTIMISER
dc.subjectINVERSE PROBLEM
dc.subjectNEIGHBOURHOOD APPROXIMATION ALGORITHM
dc.subjectPERMEABILITY ESTIMATION
dc.subjectRESERVOIR SIMULATION
dc.subjectSTOCHASTIC SEARCH ALGORITHM
dc.subjectTWO-PHASE FLOW
dc.titleRESERVOIR DESCRIPTION USING DYNAMIC PARAMETERISATION SELECTION WITH A COMBINED STOCHASTIC AND GRADIENT SEARCH
dc.typeСтатья

Файлы

Оригинальный пакет

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
Niel_06.pdf
Размер:
2.04 MB
Формат:
Adobe Portable Document Format

Коллекции