Fe3+ partitioning systematics between orthopyroxene and garnet in mantle peridotite xenoliths and implications for thermobarometry of oxidized and reduced mantle rocks
Загрузка...
Дата
Название журнала
ISSN журнала
Название тома
Издатель
Contributions to Mineralogy and Petrology
Аннотация
Описание
We have investigated the partitioning of Fe3+ between orthopyroxene (Opx) and garnet (Grt) in well-equilibrated mantle xenoliths using Mössbauer spectroscopy. The samples cover a wide range of P–T conditions (2.1–6.6 GPa, 690–1,412 °C) and geothermal gradients, and are thus representative for Earth’s upper mantle in both on-craton and off-craton continental settings. Garnet has Fe3+/Fetot ratios of 0.03–0.13 and Fe2O3 contents of 0.24–1.00 wt%. Orthopyroxene has, on average, lower Fe3+/Fetot ratios (0.01–0.09) and Fe2O3 contents (0.05–0.63 wt%). In low-pressure, high-temperature samples, however, Opx is systematically richer in Fe2O3 than the coexisting Grt. The Fe3+ Opx/Grt partition coefficient (DOpx/GrtFe3+)(DFe3+Opx/Grt) shows no obvious relationship with temperature, but increases with decreasing pressure and with increasing NaOpx. The observed Opx/Grt Fe3+ systematics imply that the Opx–Grt Fe–Mg exchange thermometer is not robust against redox changes if total Fe is treated as Fe2+. An approximate evaluation of errors on T estimates due to redox effects predicts negligible deviations for strongly reduced conditions (<65 °C), but potentially large deviations (> to ≫100 °C) for strongly oxidized conditions, especially at very high pressure and when both P and T are calculated by iteration.