SYMPLECTIC STRUCTURE OF WAVE-EQUATION IMAGING: A PATH-INTEGRAL APPROACH BASED ON THE DOUBLE-SQUARE-ROOT EQUATION
| dc.contributor.author | de Hoop M.V. | |
| dc.contributor.author | Le Rousseau J.H. | |
| dc.contributor.author | Biondi B.L. | |
| dc.date.accessioned | 2022-01-24T03:31:18Z | |
| dc.date.available | 2022-01-24T03:31:18Z | |
| dc.date.issued | 2003 | |
| dc.description.abstract | We carry out high-frequency analyses of Claerbout's double-square-root equation and its (numerical) solution procedures in heterogeneous media. We show that the double-square-root equation generates the adjoint of the single-scattering modelling operator upon substituting the leading term of the generalized Bremmer series for the background Green function. This adjoint operator yields the process of 'wave-equation' imaging. We finally decompose the wave-equation imaging process into common image point gathers in accordance with the characteristic strips in the wavefront set of the data. | |
| dc.identifier | https://elibrary.ru/item.asp?id=1493251 | |
| dc.identifier.citation | Geophysical Journal International, 2003, 153, 1, 52-74 | |
| dc.identifier.issn | 0956-540X | |
| dc.identifier.uri | https://repository.geologyscience.ru/handle/123456789/34549 | |
| dc.subject | ISOCHRONES | |
| dc.subject | MIGRATION DIP | |
| dc.subject | SCATTERING-ANGLE/AZIMUTH | |
| dc.subject | WAVE-EQUATION IMAGING | |
| dc.title | SYMPLECTIC STRUCTURE OF WAVE-EQUATION IMAGING: A PATH-INTEGRAL APPROACH BASED ON THE DOUBLE-SQUARE-ROOT EQUATION | |
| dc.type | Статья |
Файлы
Оригинальный пакет
1 - 1 из 1