EFFECTS OF SPATIAL RESOLUTION ON A RASTER BASED MODEL OF FLOOD FLOW

dc.contributor.authorHorritt M.S.
dc.contributor.authorBates P.D.
dc.date.accessioned2021-03-17T00:04:42Z
dc.date.available2021-03-17T00:04:42Z
dc.date.issued2001
dc.description.abstractThe scaling properties of a simple raster-based flood flow model are investigated. Models of resolution varying from 1000 to 10m are tested and predictions compared with satellite observations of inundated area and ground measurements of floodwave travel times, with a calibration strategy being used to determine channel friction coefficients. The optimum calibration is found to be stable with respect to changes in scale when the model is calibrated against the observed inundated area, the model reaching maximum performance at a resolution of 100m, after which no improvement is seen with increasing resolution. Projecting predicted water levels onto a high resolution DEM improves performance further, and a resolution of 500m proves adequate for predicting water levels. Predicted floodwave travel times are, however, strongly dependent on model resolution, and water storage in low lying floodplain areas near the channel is identified as an important mechanism affecting wave propagation velocity. A near channel floodplain storage version of the model is shown to be much more stable with respect to changes in scale when the model is calibrated against floodwave travel times, and shown to represent the retardation of the floodwave caused by water storage near the channel. The model cannot be calibrated to give both acceptable travel times and inundated area, and in this respect performance is poor.
dc.identifierhttps://www.elibrary.ru/item.asp?id=828411
dc.identifier.citationJournal of Hydrology, 2001, 253, 1-4, 239-249
dc.identifier.issn0022-1694
dc.identifier.urihttps://repository.geologyscience.ru/handle/123456789/26796
dc.subjectFLOOD
dc.subjectMODELLING
dc.subjectSCALING
dc.subjectCALIBRATION
dc.subjectINUNDATION
dc.subjectSPATIAL RESOLUTION
dc.titleEFFECTS OF SPATIAL RESOLUTION ON A RASTER BASED MODEL OF FLOOD FLOW
dc.typeСтатья

Файлы

Коллекции