THE ROLE OF HYDROMECHANICAL COUPLING IN FRACTURED ROCK ENGINEERING

dc.contributor.authorRutqvist J.
dc.contributor.authorStephansson O.
dc.date.accessioned2022-01-27T05:45:00Z
dc.date.available2022-01-27T05:45:00Z
dc.date.issued2003
dc.description.abstractThis paper provides a review of hydromechanical (HM) couplings in fractured rock, with special emphasis on HM interactions as a result of, or directly connected with human activities. In the early 1960s, the coupling between hydraulic and mechanical processes in fractured rock started to receive wide attention. A series of events including dam failures, landslides, and injection-induced earthquakes were believed to result from HM interaction. Moreover, the advent of the computer technology in the 1970s made possible the integration of nonlinear processes such as stress-permeability coupling and rock mass failure into coupled HM analysis. Coupled HM analysis is currently being applied to many geological engineering practices. One key parameter in such analyses is a good estimate of the relationship between stress and permeability. Based on available laboratory and field data, it was found that the permeability of fractured rock masses tends to be most sensitive to stress changes at shallow depth (low stress) and in areas of low in-situ permeability. In highly permeable, fractured rock sections, fluid flow may take place in clusters of connected fractures which are locked open as a result of previous shear dislocation or partial cementation of hard mineral filling. Such locked-open fractures tend to be relatively insensitive to stress and may therefore be conductive at great depths. Because of the great variability of HM properties in fractured rock, and the difficulties in using laboratory data for deriving in-situ material properties, the HM properties of fractured rock masses are best characterized in situ.
dc.identifierhttps://elibrary.ru/item.asp?id=5085050
dc.identifier.citationHydrogeology Journal, 2003, 11, 1, 7-40
dc.identifier.issn1431-2174
dc.identifier.urihttps://repository.geologyscience.ru/handle/123456789/34633
dc.subjectFRACTURED ROCKS
dc.subjectMECHANICAL
dc.subjectHYDRO-MECHANICAL COUPLING
dc.subjectSTRESS
dc.subjectPERMEABILITY
dc.titleTHE ROLE OF HYDROMECHANICAL COUPLING IN FRACTURED ROCK ENGINEERING
dc.typeСтатья

Файлы

Оригинальный пакет

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
Rutq_03.pdf
Размер:
3.09 MB
Формат:
Adobe Portable Document Format

Коллекции