Applications of Natural Language Processing to Geoscience Text Data and Prospectivity Modeling

dc.contributor.authorLawley C.J.M.
dc.contributor.authorGadd M.G.
dc.contributor.authorParsa M.
dc.contributor.authorLederer G.W.
dc.contributor.authorGraham G.E.
dc.contributor.authorFord A.
dc.date.accessioned2023-07-23T01:39:36Z
dc.date.available2023-07-23T01:39:36Z
dc.date.issued2023
dc.description.abstractGeological maps are powerful models for visualizing the complex distribution of rock types through space and time. However, the descriptive information that forms the basis for a preferred map interpretation is typically stored in geological map databases as unstructured text data that are difficult to use in practice. Herein we apply natural language processing (NLP) to geoscientific text data from Canada, the U.S., and Australia to address that knowledge gap. First, rock descriptions, geological ages, lithostratigraphic and lithodemic information, and other long-form text data are translated to numerical vectors, i.e., a word embedding, using a geoscience language model. Network analysis of word associations, nearest neighbors, and principal component analysis are then used to extract meaningful semantic relationships between rock types. We further demonstrate using simple Naive Bayes classifiers and the area under receiver operating characteristics plots (AUC) how word vectors can be used to: (1) predict the locations of ‘‘pegmatitic’’ (AUC = 0.962) and ‘‘alkalic’’ (AUC = 0.938) rocks; (2) predict mineral potential for Mississippi-Valley-type (AUC = 0.868) and clastic-dominated (AUC = 0.809) Zn-Pb deposits; and (3) search geoscientific text data for analogues of the giant Mount Isa clastic-dominated Zn-Pb deposit using the cosine similarities between word vectors. This form of semantic search is a promising NLP approach for assessing mineral potential with limited training data. Overall, the results highlight how geoscience language models and NLP can be used to extract new knowledge from unstructured text data and reduce the mineral exploration search space for critical raw materials.ru_RU
dc.identifier.citationNatural Resources Research, 2023, Vol. 32, No. 4, p.1503-1527ru_RU
dc.identifier.doi10.1007/s11053-023-10216-1
dc.identifier.urihttps://repository.geologyscience.ru/handle/123456789/41597
dc.language.isoenru_RU
dc.subjectNatural language processingru_RU
dc.subjectLanguage modelru_RU
dc.subjectWord embeddingru_RU
dc.subjectSemanticsru_RU
dc.subjectProspectivityru_RU
dc.subjectCritical mineralru_RU
dc.titleApplications of Natural Language Processing to Geoscience Text Data and Prospectivity Modelingru_RU
dc.typeArticleru_RU

Файлы

Оригинальный пакет

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
Lawl_23.pdf
Размер:
5.77 MB
Формат:
Adobe Portable Document Format
Описание:

Пакет лицензий

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
license.txt
Размер:
1.71 KB
Формат:
Item-specific license agreed upon to submission
Описание: