GNER: A Generative Model for Geological Named Entity Recognition Without Labeled Data Using Deep Learning

dc.contributor.authorQinjun Qiu
dc.contributor.authorZhong Xie
dc.contributor.authorLiang Wu
dc.contributor.authorLiufeng Tao
dc.date.accessioned2023-09-11T07:56:04Z
dc.date.available2023-09-11T07:56:04Z
dc.date.issued2019
dc.description.abstractA variety of detailed data about geological topics and geoscience knowledge are buried in the geoscience literature and rarely used. Named entity recognition (NER) provides both opportunities and challenges to leverage this wealth of data in the geoscience literature for data analysis and further information extraction. Existing NERmodels and techniques aremainly based on rule‐based and supervised approaches, and developing such systems requires a costly manual effort. In this paper, we first design a generic stepwise framework for domain‐specific NER. Following this framework, domain‐specific entities and domain‐general words are collected and selected as seed terms. Normalization and grouping processes are then applied to these seed terms for further analysis. A random extraction algorithm based on a unigram language model is used to generate a large‐scale training data set consisting of probabilistically labeled pseudosentences. Each generated sentence is then used as input to the self‐training and learning algorithm. Experimental results on two constructed data sets demonstrate that the proposed model effectively recognizes and identifies geological named entities.ru_RU
dc.identifier.citationEarth and Space Science, 2019, 6, 931–946ru_RU
dc.identifier.doi10.1029/2019EA000610
dc.identifier.urihttps://repository.geologyscience.ru/handle/123456789/41602
dc.language.isoenru_RU
dc.subjectgeological named entitiesru_RU
dc.subjectdeep learningru_RU
dc.titleGNER: A Generative Model for Geological Named Entity Recognition Without Labeled Data Using Deep Learningru_RU
dc.typeArticleru_RU

Файлы

Оригинальный пакет

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
Qiu_19.pdf
Размер:
1.58 MB
Формат:
Adobe Portable Document Format
Описание:

Пакет лицензий

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
license.txt
Размер:
1.71 KB
Формат:
Item-specific license agreed upon to submission
Описание: