THREE-DIMENSIONAL INDUCTION LOGGING PROBLEMS, PART 2: A FINITE-DIFFERENCE SOLUTION

dc.contributor.authorNewman G.A.
dc.contributor.authorAlumbaugh D.L.
dc.date.accessioned2021-05-28T08:26:45Z
dc.date.available2021-05-28T08:26:45Z
dc.date.issued2002
dc.description.abstractA 3-D finite-difference solution is implemented for simulating induction log responses in the quasi-static limit that include the wellbore and bedding that exhibits transverse anisotropy. The finite-difference code uses a staggered grid to approximate a vector equation for the electric field. The resulting linear system of equations is solved to a predetermined error level using iterative Krylov subspace methods. To accelerate the solution at low induction numbers (LINs), a new preconditioner is developed. This new preconditioner splits the elec-tric field into curl-free and divergence-free projections, which allows for the construction of an approximate inverse operator. Test examples show up to an order of magnitude increase in speed compared to a simple Jacobi preconditioner. Comparisons with analytical and mode matching solutions demonstrate the accuracy of the algorithm.
dc.identifierhttps://www.elibrary.ru/item.asp?id=14401301
dc.identifier.citationGeophysics, 2002, 67, 2, 484-491
dc.identifier.issn0016-8033
dc.identifier.urihttps://repository.geologyscience.ru/handle/123456789/28747
dc.titleTHREE-DIMENSIONAL INDUCTION LOGGING PROBLEMS, PART 2: A FINITE-DIFFERENCE SOLUTION
dc.typeСтатья

Файлы

Оригинальный пакет

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
Newm_02.pdf
Размер:
765.57 KB
Формат:
Adobe Portable Document Format
Описание:

Коллекции