QUANTIFYING PARAMETER UNCERTAINTY IN STOCHASTIC MODELS USING THE BOX-COX TRANSFORMATION

dc.contributor.authorThyer M.
dc.contributor.authorKuczera G.
dc.contributor.authorWang Q.J.
dc.date.accessioned2021-04-19T23:58:30Z
dc.date.available2021-04-19T23:58:30Z
dc.date.issued2002
dc.description.abstractThe Box-Cox transformation is widely used to transform hydrological data to make it approximately Gaussian. Bayesian evaluation of parameter uncertainty in stochastic models using the Box-Cox transformation is hindered by the fact that there is no analytical solution for the posterior distribution. However, the Markov chain Monte Carlo method known as the Metropolis algorithm can be used to simulate the posterior distribution. This method properly accounts for the nonnegativity constraint implicit in the Box-Cox transformation. Nonetheless, a case study using the AR(1) model uncovered a practical problem with the implementation of the Metropolis algorithm. The use of a multivariate Gaussian jump distribution resulted in unacceptable convergence behaviour. This was rectified by developing suitable parameter transformations for the mean and variance of the AR(1) process to remove the strong nonlinear dependencies with the Box-Cox transformation parameter. Applying this methodology to the Sydney annual rainfall data and the Burdekin River annual runoff data illustrates the efficacy of these parameter transformations and demonstrate the value of quantifying parameter uncertainty.
dc.identifierhttps://www.elibrary.ru/item.asp?id=1106321
dc.identifier.citationJournal of Hydrology, 2002, 265, 1-4, 246-257
dc.identifier.issn0022-1694
dc.identifier.urihttps://repository.geologyscience.ru/handle/123456789/28110
dc.subjectLAG-ONE AUTOREGRESSIVE MODELS
dc.subjectMARKOV CHAIN MONTE CARLO METHODS
dc.subjectMETROPOLIS ALGORITHM
dc.subjectPARAMETER UNCERTAINTY
dc.subjectBOX-COX TRANSFORMATION
dc.titleQUANTIFYING PARAMETER UNCERTAINTY IN STOCHASTIC MODELS USING THE BOX-COX TRANSFORMATION
dc.typeСтатья

Файлы

Оригинальный пакет

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
Thye_02.pdf
Размер:
226.23 KB
Формат:
Adobe Portable Document Format
Описание:

Коллекции