DEALING WITH ZEROS AND MISSING VALUES IN COMPOSITIONAL DATA SETS USING NONPARAMETRIC IMPUTATION

dc.contributor.authorMartin-Fernandez J.A.
dc.contributor.authorBarcelo-Vidal C.
dc.contributor.authorPawlowsky-Glahn V.
dc.date.accessioned2022-01-25T05:52:45Z
dc.date.available2022-01-25T05:52:45Z
dc.date.issued2003
dc.description.abstractThe statistical analysis of compositional data based on logratios of parts is not suitable when zeros are present in a data set. Nevertheless, if there is interest in using this modeling approach, several strategies have been published in the specialized literature which can be used. In particular, substitution or imputation strategies are available for rounded zeros. In this paper, existing nonparametric imputation methods-both for the additive and the multiplicative approach-are revised and essential properties of the last method are given. For missing values a generalization of the multiplicative approach is proposed.
dc.identifierhttps://elibrary.ru/item.asp?id=5005813
dc.identifier.citationMathematical Geology, 2003, 35, 3, 253-278
dc.identifier.issn0882-8121
dc.identifier.urihttps://repository.geologyscience.ru/handle/123456789/34600
dc.subjectAITCHISON DISTANCE
dc.subjectDETECTION LIMIT
dc.subjectLOG-RATIO TRANSFORMATION
dc.subjectSIMPLEX, STRESS
dc.subjectTHRESHOLD
dc.titleDEALING WITH ZEROS AND MISSING VALUES IN COMPOSITIONAL DATA SETS USING NONPARAMETRIC IMPUTATION
dc.typeСтатья

Файлы

Оригинальный пакет

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
Mart_03.pdf
Размер:
130.03 KB
Формат:
Adobe Portable Document Format

Коллекции