UTILIZATION OF REGRESSION MODELS FOR RAINFALL ESTIMATES USING RADAR-DERIVED RAINFALL DATA AND RAIN GAUGE DATA

dc.contributor.authorSokol Z.
dc.date.accessioned2022-01-25T04:56:56Z
dc.date.available2022-01-25T04:56:56Z
dc.date.issued2003
dc.description.abstractThe procedure estimating hourly rainfalls by merging radar-derived rainfalls and gauge measurements is developed and tested. It uses simple linear regression, which is complemented by the normalization and correction of distribution. The data from radar Tulsa, Oklahoma, Weather Surveillance Radar-1988 Doppler version and rain gauge data from the radar domain are used. The quality of estimates is evaluated against independent rain gauges by the root-mean-square-error, bias and correlation coefficient in dependence on the density of a gauge network. The results indicate that even a sparse gauge network (about 50 gauges, i.e. 4000 km2 per one gauge) is sufficient to improve the radar-derived rainfalls. The improvement increases with the number of gauges.
dc.identifierhttps://elibrary.ru/item.asp?id=1613184
dc.identifier.citationJournal of Hydrology, 2003, 278, 1-4, 144-152
dc.identifier.issn0022-1694
dc.identifier.urihttps://repository.geologyscience.ru/handle/123456789/34572
dc.subjectRAINFALL
dc.subjectRADAR
dc.subjectRAIN GAUGE
dc.subjectREGRESSION
dc.titleUTILIZATION OF REGRESSION MODELS FOR RAINFALL ESTIMATES USING RADAR-DERIVED RAINFALL DATA AND RAIN GAUGE DATA
dc.typeСтатья

Файлы

Оригинальный пакет

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
Soko_03.pdf
Размер:
320.77 KB
Формат:
Adobe Portable Document Format

Коллекции