DATA AND MODEL UNCERTAINTY ESTIMATION FOR LINEAR INVERSION

dc.contributor.authorvan Wijk K.
dc.contributor.authorScales J.A.
dc.contributor.authorNavidi W.
dc.contributor.authorTenorio L.
dc.date.accessioned2021-04-20T00:44:56Z
dc.date.available2021-04-20T00:44:56Z
dc.date.issued2002
dc.description.abstractInverse theory concerns the problem of making inferences about physical systems from indirect noisy measurements. Information about the errors in the observations is essential to solve any inverse problem, otherwise it is impossible to say when a feature 'fits the data'. In practice, however, one seldom has a direct estimate of the data errors. We exploit the trade-off between data prediction and model or data structure to determine both model-independent and model-based estimates of the noise characteristics from a single realization of the data. Noise estimates are then used to characterize the set of reasonable models that fit the data, for example, by intersecting prior model parameter constraints with the set of data fitting models. This prior information can also be used to set bounds on the bias. We illustrate our methods with synthetic examples of vertical seismic profiling and cross-well tomography.
dc.identifierhttps://www.elibrary.ru/item.asp?id=1205323
dc.identifier.citationGeophysical Journal International, 2002, 149, 3, 625-632
dc.identifier.issn0956-540X
dc.identifier.urihttps://repository.geologyscience.ru/handle/123456789/28154
dc.subjectCONFIDENCE INTERVALS
dc.subjectERROR ANALYSIS
dc.subjectINVERSION
dc.subjectL CURVE
dc.titleDATA AND MODEL UNCERTAINTY ESTIMATION FOR LINEAR INVERSION
dc.typeСтатья

Файлы

Оригинальный пакет

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
Wijk_02.pdf
Размер:
157.74 KB
Формат:
Adobe Portable Document Format
Описание:

Коллекции