GRAPHIC BIOSTRATIGRAPHIC CORRELATION USING GENETIC ALGORITHMS

dc.contributor.authorZhang T.
dc.contributor.authorPlotnick R.E.
dc.date.accessioned2025-03-08T04:15:11Z
dc.date.available2025-03-08T04:15:11Z
dc.date.issued2006
dc.description.abstractThe most generally used method for estimating the basin-wide sequence and scaling of first and last occurrences, based on their occurrence in local sections, is Shaw’s graphic correlation method. The key step in this method is the determination of the line of correlation (LOC), which represents the best estimate of the correlation between two local sections, or between a local section and a composite standard. In general, available techniques for fitting the LOC for multiple sections are tedious, subjective, or computationally expensive. A new method employing genetic algorithms can dramatically reduce the effort involved in determining the LOC and produces stable biostratigraphic correlations and composite range charts objectively and efficiently. Genetic algorithms are an artificial intelligence technique that excels in locating the optimum solution from a large number of alternative choices. In the case of the LOC, the alternative choices are the number of line segments comprising the complete line and the positions of each segment’s beginning and end points. For a given number of segments, a wide range of alternative LOCs can be rapidly evaluated and a potential optimum fit determined. It is also possible to estimate the point when no further refinement of the fit by adding line segments is necessary. Genetic algorithms can also be applied to other methods for quantitative biostratigraphy.
dc.identifierhttps://www.elibrary.ru/item.asp?id=50865819
dc.identifier.citationMathematical Geology, 2006, 38, 7, 781-800
dc.identifier.doi10.1007/s11004-006-9062-8
dc.identifier.issn0882-8121
dc.identifier.urihttps://repository.geologyscience.ru/handle/123456789/48308
dc.subjectBIOSTRATIGRAPHY
dc.subjectCORRELATION
dc.subjectARTIFICIAL INTELLIGENCE
dc.subjectGENETIC ALGORITHMS
dc.titleGRAPHIC BIOSTRATIGRAPHIC CORRELATION USING GENETIC ALGORITHMS
dc.typeСтатья

Файлы

Оригинальный пакет

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
Zhan_06.pdf
Размер:
343.87 KB
Формат:
Adobe Portable Document Format

Коллекции