A NEW NONPARAMETRIC DISCRIMINANT ANALYSIS ALGORITHM ACCOUNTING FOR BOUNDED DATA ERRORS

dc.contributor.authorNivlet P.
dc.contributor.authorFournier F.
dc.contributor.authorRoyer J.J.
dc.date.accessioned2021-04-16T05:17:16Z
dc.date.available2021-04-16T05:17:16Z
dc.date.issued2002
dc.description.abstractIn a statistical pattern recognition context, discriminant analysis is designed to classify, when possible, objects into predefined categories. Because this method requires precise input data, uncertainties cannot be propagated in the classifying process. In real case studies, this could lead to drastic misinterpretations of objects. A new nonparametric algorithm based on interval arithmetic has thus been developed to propagate interval-form data. They consist in calculating interval conditional probability density functions and interval posterior probabilities. Objects are eventually assigned to a subset of classes, consistent with the data and their uncertainties. The classifying model is thus less precise, but more realistic than the standard one, which we prove on a real case study.
dc.identifierhttps://www.elibrary.ru/item.asp?id=950405
dc.identifier.citationMathematical Geology, 2002, 34, 2, 223-246
dc.identifier.issn0882-8121
dc.identifier.urihttps://repository.geologyscience.ru/handle/123456789/27884
dc.subjectPATTERN RECOGNITION
dc.subjectINTERVAL ARITHMETIC
dc.subjectROCK TYPING
dc.subjectBOREHOLE DATA
dc.titleA NEW NONPARAMETRIC DISCRIMINANT ANALYSIS ALGORITHM ACCOUNTING FOR BOUNDED DATA ERRORS
dc.typeСтатья

Файлы

Оригинальный пакет

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
Nivl_02.pdf
Размер:
2.06 MB
Формат:
Adobe Portable Document Format
Описание:

Коллекции