Deep Convolutions for In-Depth Automated Rock Typing

dc.contributor.authorBaraboshkin E.E.
dc.contributor.authorIsmailova L.S.
dc.contributor.authorOrlov D.M.
dc.contributor.authorZhukovskaya E.A.
dc.contributor.authorKalmykov G.A.
dc.contributor.authorKhotylev O.V.
dc.contributor.authorBaraboshkin E.Yu.
dc.contributor.authorKoroteev E.A.
dc.date.accessioned2023-09-11T08:05:44Z
dc.date.available2023-09-11T08:05:44Z
dc.date.issued2020
dc.description.abstractThe description of rocks is one of the most time-consuming tasks in the everyday work of a geologist, especially when very accurate description is required. We here present a method that reduces the time needed for accurate description of rocks, enabling the geologist to work more efficiently. We describe the application of methods based on color distribution analysis and feature extraction. Then we focus on a new approach, used by us, which is based on convolutional neural networks. We used several well-known neural network architectures (AlexNet, VGG, GoogLeNet, ResNet) and made a comparison of their performance. The precision of the algorithms is up to 95% on the validation set with GoogLeNet architecture. The best of the proposed algorithms can describe 50 m of full-size core in one minute.ru_RU
dc.identifier.citationComputers & Geosciences, 2020, 135, 104330ru_RU
dc.identifier.doi10.1016/j.cageo.2019.104330
dc.identifier.urihttps://repository.geologyscience.ru/handle/123456789/41603
dc.language.isoenru_RU
dc.subjectCore Imageru_RU
dc.subjectDescriptionru_RU
dc.subjectConvolutional Neural Networksru_RU
dc.subjectRepresentationru_RU
dc.subjectGeologyru_RU
dc.subjectLithotypesru_RU
dc.titleDeep Convolutions for In-Depth Automated Rock Typingru_RU
dc.typeArticleru_RU

Файлы

Оригинальный пакет

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
Bara_19.pdf
Размер:
1.28 MB
Формат:
Adobe Portable Document Format
Описание:

Пакет лицензий

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
license.txt
Размер:
1.71 KB
Формат:
Item-specific license agreed upon to submission
Описание: