GEOCHEMICAL REACTIONS AND DYNAMICS DURING TITRATION OF A CONTAMINATED GROUNDWATER WITH HIGH URANIUM, ALUMINUM, AND CALCIUM

dc.contributor.authorGu B.
dc.contributor.authorBrooks S.C.
dc.contributor.authorRoh Y.
dc.contributor.authorJardine P.M.
dc.date.accessioned2021-12-26T02:54:49Z
dc.date.available2021-12-26T02:54:49Z
dc.date.issued2003
dc.description.abstractThis study investigated possible geochemical reactions during titration of a contaminated groundwater with a low pH but high concentrations of aluminum, calcium, magnesium, manganese, and trace contaminant metals/radionuclides such as uranium, technetium, nickel, and cobalt. Both Na-carbonate and hydroxide were used as titrants, and a geochemical equilibrium reaction path model was employed to predict aqueous species and mineral precipitation during titration. Although the model appeared to be adequate to describe the concentration profiles of some metal cations, solution pH, and mineral precipitates, it failed to describe the concentrations of U during titration and its precipitation. Most U (as uranyl, UO22+) as well as Tc (as pertechnetate, TcO4-) were found to be sorbed and coprecipitated with amorphous Al and Fe oxyhydroxides at pH below ~5.5, but slow desorption or dissolution of U and Tc occurred at higher pH values when Na2CO3 was used as the titrant. In general, the precipitation of major cationic species followed the order of Fe(OH)3 and/or FeCo0.1(OH)3.2, Al4(OH)10SO4, MnCO3, CaCO3, conversion of Al4(OH)10SO4 to Al(OH)3,am, Mn(OH)2, Mg(OH)2, MgCO3, and Ca(OH)2. The formation of mixed or double hydroxide phases of Ni and Co with Al and Fe oxyhydroxides was thought to be responsible for the removal of Ni and Co in solution. Results of this study indicate that, although the hydrolysis and precipitation of a single cation are known, complex reactions such as sorption/desorption, coprecipitation of mixed mineral phases, and their dissolution could occur simultaneously. These processes as well as the kinetic constraints must be considered in the design of the remediation strategies and modeling to better predict the activities of various metal species and solid precipitates during pre- and post-groundwater treatment practices.
dc.identifierhttps://www.elibrary.ru/item.asp?id=4699278
dc.identifier.citationGeochimica et Cosmochimica Acta, 2003, 67, 15, 2749-2761
dc.identifier.issn0016-7037
dc.identifier.urihttps://repository.geologyscience.ru/handle/123456789/33853
dc.titleGEOCHEMICAL REACTIONS AND DYNAMICS DURING TITRATION OF A CONTAMINATED GROUNDWATER WITH HIGH URANIUM, ALUMINUM, AND CALCIUM
dc.typeСтатья

Файлы

Оригинальный пакет

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
Gu_03.pdf
Размер:
323.37 KB
Формат:
Adobe Portable Document Format
Описание:

Коллекции