Abstract:
Deciphering the satellite images of medium and high spatial resolution of the northern territories of Western Siberia has been carried out using geoinformation system ArcGIS 10.3. Images of medium resolution Landsat-8 and high resolution Kanopus-V were used. Kanopus-V images alluded to determine the number and areas of small lakes, which are considered as intensive sources of methane emission into the atmosphere from thermokarst lakes. Data on the spatial characteristics of thermokarst lakes were obtained. Based on the integration of images of medium and high spatial resolution, a synthesized histogram of the distribution of lakes in a wide range of sizes was constructed, taking into account small lakes. The obtained histogram was approximated by a lognormal distribution law by the Pearson criterion with a probability of 0.99. Based on the geo-simulation approach, a new model of the spatial structure of the fields of thermokarst lakes is presented, taking into account the lognormal law of the lake size-distribution. Algorithms for modeling the spatial structure of the fields of thermokarst lakes are described. An example of modeling the field of thermokarst lakes with a lognormal law of their size-distribution is given. The practical applicability of the previously developed model with an exponential distribution of lakes in size, based on data from Landsat images, has been experimentally confirmed. The results can be used to obtain predictions of the dynamics of methane emissions from the thermokarst lakes of the Arctic zone of Northern Eurasia for the coming decades in the context of climate changes.