Abstract:
Four times of observation of the ocean tide and groundwater levels in the coastal aquifers near Beihai, China show that fluctuation in the tide-induced groundwater levels follows the tide, with the highest and lowest water levels corresponding to the high water level syzygy tide and the low water level neap tide. The tidal coefficient is less than 0.5, decreasing approximately exponentially with the distance from the coast. The tide can affect the groundwater levels at observation wells as far as about 4,200 and 3,300 m in the southern and northern coasts in Beihai. Observations and spectrum analyses of the time series of the tide and water levels suggest that the tide and water levels have similar changes with complex fluctuations of a long period of 14.37 days and two short periods of 24.7 and 12.5 h. Time lags of water levels to the tide at observation wells last several hours and increases roughly linearly with the distance from the coast. Mathematic models consisting of a periodic term plus a linear term are established to describe the changes in the tide and the groundwater levels. The periodic terms for the tide and water levels are constructed using finite Fourier’s series consisting of 7 to 11 terms other than a single term of a sine function in earlier work. Computed water levels with the models can fit the observed water levels with reasonable accuracy and satisfactory prediction of the changes in the water levels is also obtained.