Abstract:
Taiyuan city has experienced serious land subsidence since the 1950s, with the maximum accumulated subsidence of 2,960 mm and a total affected area of 585 km2 by 2003. Tectonic settlement was found to contribute about 1% and the major cause is over-exploitation of groundwater. The spatial–temporal relationship between the areal distribution of land subsidence and that of groundwater drawdown from 1956 to 2000 indicates that although land subsidence centers overall match groundwater depression cones, there are local deviations, and that although the time series curves are similar, land subsidence always lags behind groundwater level decline, with different lag time at different sites. The major findings of this work on the control of stratigraphic heterogeneity on the spatial pattern of land subsidence at Taiyuan include: (1) land subsidence centers shift from the corresponding groundwater depression cones to the sides with thicker accumulated clay layers; (2) under the same pumping rate, land subsidence at places with more clay interlayers and thinner individual interlayers is greater and the lag time shorter; and (3) land subsidence is closely related to the physical properties of clay soils. The Interbed Storage Package-1, a modular subroutine of MODFLOW was employed to simulate the areal distribution of individual layer compression. The modeling results show that compression of different clay layers has different contribution to land subsidence. Pumping groundwater from water-bearing zones close to the most compressible clay layers should therefore be carefully controlled.