MineralImage5k: A benchmark for zero-shot raw mineral visual recognition and description

dc.contributor.authorNesteruk S.
dc.contributor.authorAgafonova J.
dc.contributor.authorPavlov I.
dc.contributor.authorGerasimov M.
dc.contributor.authorLatyshev N.
dc.contributor.authorDimitrov D.
dc.contributor.authorKuznetsov A.
dc.contributor.authorKadurin A.
dc.contributor.authorPlechov P.
dc.date.accessioned2023-09-11T08:17:25Z
dc.date.available2023-09-11T08:17:25Z
dc.date.issued2023
dc.description.abstractMineral image recognition is a challenging computer vision problem. Without external tools, even a human expert cannot distinguish some mineral species accurately. Previous research was mainly focused on processed mineral recognition. This is considered to be a simplified statement of a problem because processed minerals are more visually expressive. On the contrary, in a raw sample, the target mineral can appear in the form of thinly represented inclusions. In real life, the raw samples usually require automatic mineral species identification. Another difficulty in raw mineral recognition is the shortage of publicly available training and validation data. It is impossible to compare different deep learning approaches when the results are evaluated on dissimilar data. The main contribution of this paper is providing an open benchmark for zero-shot raw mineral visual recognition. Besides the evaluation-only zero-shot classification dataset, we publish subsets for segmentation, mineral size estimation, and few-shot classification. For all of the provided computer vision problems, we publish baseline solutions we offer for the community to beat.ru_RU
dc.identifier.citationComputers & Geosciences, 2023, v. 178, 105414ru_RU
dc.identifier.doi10.1016/j.cageo.2023.105414
dc.identifier.urihttps://repository.geologyscience.ru/handle/123456789/41604
dc.language.isoruru_RU
dc.subjectMineral image recognitionru_RU
dc.subjectraw mineral recognitionru_RU
dc.subjectdeep learningru_RU
dc.subjectzero-shot classificationru_RU
dc.subjectfew-shot classificationru_RU
dc.titleMineralImage5k: A benchmark for zero-shot raw mineral visual recognition and descriptionru_RU
dc.typeArticleru_RU

Файлы

Оригинальный пакет

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
Nest_23.docx
Размер:
18.67 KB
Формат:
Microsoft Word XML
Описание:

Пакет лицензий

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
license.txt
Размер:
1.71 KB
Формат:
Item-specific license agreed upon to submission
Описание: