The 1956 eruption of Bezymianny volcano (Kamchatka)—part I: petrological constraints on magma storage and eruptive dynamics

dc.contributor.authorMartel Caroline
dc.contributor.authorErdmann Saskia
dc.contributor.authorBoudon Georges
dc.contributor.authorBalcone‑Boissard Hélène
dc.contributor.authorOstorero Léa
dc.contributor.authord’Augustin Thiebaut
dc.contributor.authorBelousov Alexander
dc.contributor.authorBelousova Marina
dc.contributor.authorDavydova Vesta O.
dc.contributor.authorShcherbakov Vasily D.
dc.date.accessioned2025-10-26T03:43:27Z
dc.date.issued2025
dc.description.abstractBezymianny volcano (Kamchatka, Russia) is an andesitic island arc stratovolcano that started to erupt in 1955 after ~ 1000 years of dormancy. On March 30, 1956, the climactic phase of the eruption was preceded by a 4-month-long emplacement of a shallow cryptodome, which triggered a flank collapse violently decompressing the magma into a laterally directed blast followed by an explosive phase emplacing extensive pumice concentrated pyroclastic density currents (pumice C-PDC). Aiming at constraining the plumbing system below Bezymianny volcano prior to the 1956 eruption, we performed a multiphase textural and petrological study using dense to vesiculated clasts of the blast and pumice samples from the post-blast C-PDC deposits. We inferred the pressure and temperature conditions of magma storage using sample vesicularity, amphibole destabilization rims, volatile contents in melt inclusions, microlite textures, and phase compositions (phenocrysts, microlites, and glasses). We propose a three-level magma storage characterized by a deep reservoir (≥ 200–350 MPa, ≥ 840 °C, ~ 4.0–8.0 wt% H 2 O and CO 2 up to 1500 ppm, where amphibole is stable), a shallow reservoir (50–100 MPa, 850–900 °C, 1.5–4.0 wt% H 2 O and CO 2 < 250 ppm, where amphibole is unstable and quartz crystallizes) in which the pre-cryptodome magma resided and from which the post-blast pumiceous magma originated, and a subsurface cryptodome (< 25 MPa, ~ 900 °C, cristobalite crystallized) from which the blast was initiated. This plumbing system provides the framework for constraining the timescales of the 1956 eruptive dynamics (companion paper). The three-stage architecture proposed for the 1956 andesitic reservoir compares to the present-day plumbing system emitting mafic lavas, thus suggesting that the timescales of the eruptive dynamics (e.g., magma residence time and ascent rate) may be the key to determining evolved or mafic magmas.
dc.identifier.citationBulletin of Volcanology (2025) 87:18
dc.identifier.doi10.1007/s00445-025-01802-7
dc.identifier.urihttp://83.149.241.12:4000/handle/123456789/49415
dc.language.isoen
dc.subjectMagma storage
dc.subjectAmphibole
dc.subjectDecomposition rims
dc.subjectMelt inclusion composition
dc.subjectMicrolite
dc.subjectSilica polymorphs
dc.subjectThermobarometry
dc.titleThe 1956 eruption of Bezymianny volcano (Kamchatka)—part I: petrological constraints on magma storage and eruptive dynamics
dc.typeArticle

Файлы

Оригинальный пакет

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
Mart_25.pdf
Размер:
3.85 MB
Формат:
Adobe Portable Document Format

Пакет лицензий

Показано 1 - 1 из 1
Загрузка...
Изображение-миниатюра
Имя:
license.txt
Размер:
1.71 KB
Формат:
Item-specific license agreed upon to submission
Описание: